c^2=8^2+7^2

Simple and best practice solution for c^2=8^2+7^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for c^2=8^2+7^2 equation:



c^2=8^2+7^2
We move all terms to the left:
c^2-(8^2+7^2)=0
We add all the numbers together, and all the variables
c^2-113=0
a = 1; b = 0; c = -113;
Δ = b2-4ac
Δ = 02-4·1·(-113)
Δ = 452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{452}=\sqrt{4*113}=\sqrt{4}*\sqrt{113}=2\sqrt{113}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{113}}{2*1}=\frac{0-2\sqrt{113}}{2} =-\frac{2\sqrt{113}}{2} =-\sqrt{113} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{113}}{2*1}=\frac{0+2\sqrt{113}}{2} =\frac{2\sqrt{113}}{2} =\sqrt{113} $

See similar equations:

| 5v-12=23 | | 23x+12+21x-8=180 | | r=8V=1808.64^3 | | 2740.1573-50x=5(10x-200) | | k/20=8 | | 7c+6=(c-4)2c | | 5p-20=15 | | 3=3r−6 | | -10=-2m-13 | | 19x+30=540 | | X+11+8+x=20 | | c^2=64+44 | | -71=3w | | 45x+11x-1=111 | | 8(q+6)=72 | | r=5V=706.5^3 | | 3x-29÷5=-4 | | 56=4(f-79) | | 7(4w+2)/4=-5 | | x^2-400=410 | | 35=x4x= | | 90=(5x−23)+3x-15 | | 70=2.5x | | x/9=( | | 3m-37=14 | | -6+36x=-2x-6 | | 6y-4y-11=22.58 | | x=(22+38) | | 16^(x+3)=32 | | 5(x-4)=6x−8 | | 3x−15+(5x−23)=90 | | 97÷x=241/4 |

Equations solver categories